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Abstract
Using wave packet molecular dynamics simulations we calculate the dynamic
structure factor S(k, ω) of a two-component plasma (TCP). The results are
compared with corresponding classical molecular dynamics simulations of a
model TCP with effective interactions. Both approaches agree well in the low
frequency part of S(k, ω) but increasingly deviate for high frequencies. This
clearly demonstrates a restriction of the method of effective potentials to static
properties and low frequency phenomena.

PACS numbers: 52.25.−b, 52.65.Yy, 03.67.Lx, 71.10.−w

1. Introduction

Simple two-component plasmas (TCP), such as e.g. a proton–electron plasma, are of
fundamental interest for the understanding and description of many real plasmas in particular
for temperature–density regimes where strong interparticle correlations show up. They have,
however, to be treated by quantum mechanics as the wave nature of the particles and their
indistinguishability may be important. In the wave packet molecular dynamics (WPMD)
method [1–5], which is based on a time-dependent variational principle, these quantum effects
are approximately taken into account by representing the electrons by anti-symmetrized
localized wave packets which have a simple analytical form and are described by only a
few relevant parameters. The wave packet approach fairly well reproduces many dynamical
properties of quantum many-body systems and reduces the computational amount from the
solution of a partial differential equation to the much simpler case of a set of ordinary
differential equations. Another very fruitful approach used for describing strongly coupled
TCPs is the method of effective potentials [6] where the Coulomb interaction is regularized
at short distances. Such effective interactions have been derived e.g. from the two-particle
Slater sum [7, 8] and are exact in the low density limit. Their application to nonideal TCPs
enables the use of classical statistics and numerical simulations such as classical molecular
dynamics (MD) or Monte Carlo, see e.g. [9–16]. These simulations have shown that the
concept of effective potentials is quite successful in describing equilibrium properties such
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as thermodynamic functions and correlation functions of a real TCP. As based on quantum
statistical considerations, it is, however, less suited to study transport properties or non-
equilibrium situations. Here an extension to potentials with time-dependent parameters, as
e.g. provided by the WPMD, is required. In this context, two important questions arise. First, of
course, how well the classical dynamics generated within the WPMD approach can describe
the dynamic properties of a quantum TCP. Second, to which extent the concept of using
time-independent effective potentials is applicable for dynamic properties or truly dynamic
situations. In this paper, we aim at finding answers to the second question by comparing
the frequency dependence of the dynamic structure factor of a TCP of protons and electrons
as obtained from WPMD simulations and classical MD simulations with time-independent
effective potentials.

2. Wave packet molecular dynamics simulations

In our present application of the WPMD simulation technique to hydrogen TCPs, the Ni

protons of our simulation sample are described classically, i.e. by their positions �RI and
momenta �P I , whereas the Ne electrons are represented by Gaussian wave packets
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with eight variational parameters {�rk(t), �pk(t), γk(t), pγk
(t)}, representing the mean values of

position and momentum, and the width and its conjugate momentum. The dynamics of the
system is governed by the principle of stationary action, from which one can derive equations
of motion for the variational parameters {qk(t)} of the pseudo-Hamiltonian form∑
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Here � = Â
∏

k ϕk(�xk, t) is the many-particle wavefunction in Hartree–Fock approximation
(Â indicates the anti-symmetrization) and Ĥ is the Hamilton operator (e′2 = e2/4πε0)
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for the proton–electron TCP at hand. Further details on the WPMD method with full anti-
symmetrization are given in [4, 5, 15]. As we are here mainly interested in diffraction effects,
we restrict ourselves to systems with temperatures T well above the Fermi temperature TF and
thus consider the much less demanding case of the Hartree wavefunction � = ∏

k ϕk(�xk, t).
Now the equations of motion take the usual symplectic form
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where the expectation value H = 〈�|Ĥ |�〉 is given by H = Hee + Hei + Hii with
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To avoid an infinite growth of the widths γk of unbound electrons, we confine every
wave packet in an external harmonic-oscillator potential which moves together with the centre
of mass of the electrons by adding Ĥext = (

9h̄2
/

8mγ 4
0

)∑
k( �̂xk − 〈�̂xk〉)2 to equation (3).

The parameter γ0 adjusts the mean width of unbound electrons. It is usually chosen much
larger than the typical width of a bound electron, e.g. in an atom or molecule. This
‘confinement potential’ results in an additional termH′

ee = (
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/
8mγ 4

0

) ∑
k γ 2

k in equation (5)
and the corresponding Hamiltonian for free electrons thus takes the form
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The width thus evolves dynamically according to the equations of motion, but now restricted to
values about the minimum of the ‘potential energy’

(
9h̄2

/
8mγ 2

0

)(
γ 2

0

/
γ 2

k +γ 2
k

/
γ 2

0

)
at γk = γ0.

For the present application, γ0 was chosen as γ0 = 0.64λth with the thermal wavelength
λth = h̄/(mkBT )1/2, see [4] for details. As was recently shown [6], such a confinement of the
width and a resulting Hee like (6) can also be obtained in a more consistent way by appropriate
additional phase factors of the wave packets (1).

Equations (4)–(6) are solved by the MD simulation technique as used and described in
[11–14], here for N = Ni + Ne = 500 particles. The actual simulations are performed in the
microcanonical ensemble. It is generated by a previous simulation which starts from random
positions and velocities and relaxes towards the equilibrium distribution of desired temperature
by dynamical propagation with velocity rescaling.

3. Results

The quantity of interest in the present study is the dynamic structure factor

S(k, ω) = 1

N

∫ ∞

−∞
dt eiωt 〈ρk(t)ρk(0)〉, (7)

where ρk(t) = ∑
α qα exp(−ik · rα(t)) is the microscopic fluctuating charge density. It

is sampled for a given wave number k from the positions {�rα(t)} (α = 1, . . . , N) of
protons and electrons (qα = ±e) during the simulation runs. For more details on the
dynamic structure factor of a TCP see [11, 12, 14]. To determine S(k, ω) for a proton–
electron TCP within the WPMD method, numerical simulations based on equations (4)–(6)
have been performed for various densities and temperatures. Figure 1 shows results for
S(k, ω) (left and centre) at different coupling parameters 
 = e2/(4πε0akBT ) = 0.5, 1
and 2 (a = (3/4πn)1/3, n = ni = ne) and fixed T/TF = 7, that is, for non-degenerate
systems. The wave number is k = 2π/L = 0.62a−1 which is the smallest accessible value
for Ni = Ne = 250 protons and electrons in a box of volume L3.

In the present implementation of the WPMD, quantum effects are entirely contained and
described by the additional degrees of freedom γk(t), pγk

(t) associated with the variable widths
of the (Gaussian) wave packets. This results in a replacement of the Coulomb interaction in the
original Hamiltonian (2) by the effective interactions Vee ∝ erf(ree/σee)/r, Vei ∝ erf(rei/σei)/r

in the final equations of motion (4) and (5), with, however, fully time-dependent σee, σei

according to the time evolution of the widths γk(t). The related equilibrium distributions
of the width as sampled from γk(t) during the WPMD simulation runs are plotted in the
right panel of figure 1. They are concentrated about the minimum of the potential energy
of equation (6), i.e. at γ0 = 0.64λth, and are almost identical in all given cases having only
slightly different mean values 〈γ 〉 (as denoted in the figure). These mean values are now taken
for additional simulations with fixed γk = 〈γ 〉. This corresponds to an entirely classical MD
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Figure 1. Left and centre: dynamic structure factor S(k, w) for a proton–electron plasma as a
function of ω in units of the electron plasma frequency ωp at fixed degeneracy T/TF = 7, wave
number k = 0.62a−1 and different coupling parameters 
 = 0.5 (top), 1 (centre) and 2 (bottom).
Compared are results from the WPMD simulations and MD simulations using effective potentials.
The dashed curves in the central panel show a functional dependency ∝ 1/ω5.5 as expected for
S(k, w → ∞) of a system with pure Coulomb interactions. Right: distribution W(γ ) of the widths
γ (scaled in units of the thermal wave-length) of the wave packets as sampled from the WPMD
simulations.

description of the TCP at hand using the effective interactions Vee(r) = e′2erf(
√

3r/2〈γ 〉)/r

between electrons and Vei(r) = −e′2erf(
√

3r/
√

2〈γ 〉)/r between protons and electrons.
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The resulting S(k, ω) is shown as well in figure 1 (left and centre). In the low frequency
part ω � ωp (left panel), where the prominent plasmon peak shows up around the electron
plasma frequency ωp, the MD and WPMD agree almost perfectly within the fluctuations. For
higher frequencies ω � 2ωp (centre) and increasing coupling 
, increasing deviations show
up. Particularly interesting is here the observed slower decay of S(k, ω) at high frequencies
in the WPMD treatment. For a TCP with the effective potentials of equation (5) and with
fixed time-independent γk = 〈γ 〉, theoretical studies [17] predict an asymptotic behaviour of
the dynamic structure factor at high frequencies like S(k, ω) ∼ exp(−αω)/ω11/2 (with some
numerical factor α), in very good agreement with the simulation results reported in [12]. For
a real TCP with Coulomb interaction, the predicted asymptotic is S(k, ω) ∼ ω11/2 [17, 18],
showing a much weaker and non-exponential decay. This asymptotic is expected to be observed
in a fully quantum mechanical description of a proton–electron plasma. The present WPMD
simulations clearly show a tendency towards this asymptotic behaviour. But to draw final
conclusions on this issue, a more comprehensive simulation study with higher time resolution
and better statistics is needed.

4. Discussion and conclusions

The presented results definitely indicate an increasing deviation of both simulation treatments
starting at a certain frequency. We are thus looking for a typical frequency which separates
a high frequency domain from the low frequency regime where time-independent effective
potentials and the WPMD treatment coincide. As an estimate for this characteristic frequency
in the case of the WPMD we consider the typical time scale for oscillations in the effective
potential for the width, equation (6). Expanding

(
9h̄2

/
8mγ 2

0

)(
γ 2

0

/
γ 2

k + γ 2
k

/
γ 2

0

)
to second

order in γ about its minimum at γk = γ0 results in a characteristic frequency ω2
γ = 9h̄2/m2γ 4

0
which yields for the present choice and settings, i.e. γ0 = 0.64λth and λth = 0.7a

(corresponding to T/TF = 7), the relation ωγ /ωp ≈ 6/
√


. This is in fairly good agreement
with the frequencies which can be deduced from figure 1 (centre) as the point where the
WPMD and the MD results start to deviate substantially.

Comparing the frequency dependence of the dynamic structure factor obtained by the
WPMD approach and by MD simulations with time-independent effective potentials, we have
explicitly shown that the time-dependent dynamically varying widths of the wave packets
will strongly affect the high frequency, short-time behaviour of the density fluctuations. This
starts at a characteristic frequency associated with the temporal variation of the width of the
wave packets. It is assumed that the temporal variation of the actual wave-function(s) in
a real quantum TCP will have a similar strong influence on the short-time dynamics. This
supports that the method of time-independent effective potentials is in fact, as supposed, only
appropriate to describe static properties of a quantum TCP or time-dependent processes at
sufficiently low frequencies. In the high frequency domain or in truly dynamical situations,
a more elaborate scheme is needed to map the required time-dependent quantum treatment
into a classical dynamics. Based on a variational formulation of the Schrödinger equation,
the concept of WPMD might be a promising candidate. But here further investigations are
necessary.
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[18] Reinholz H, Redmer R, Röpke G and Wierling A 2000 Phys. Rev. E 62 5648

http://dx.doi.org/10.1063/1.430620
http://dx.doi.org/10.1016/0375-9474(90)90328-J
http://dx.doi.org/10.1016/0375-9601(94)91015-4
http://dx.doi.org/10.1063/1.467889
http://dx.doi.org/10.1088/0305-4470/36/22/344
http://dx.doi.org/10.1016/0375-9601(77)90111-6
http://dx.doi.org/10.1016/0375-9601(78)90066-X
http://dx.doi.org/10.1088/0032-1028/21/6/002
http://dx.doi.org/10.1103/PhysRevLett.41.1379
http://dx.doi.org/10.1103/PhysRevA.23.2041
http://dx.doi.org/10.1016/0375-9601(83)90097-X
http://dx.doi.org/10.1088/0305-4470/36/22/355
http://dx.doi.org/10.1002/ctpp.200310054
http://dx.doi.org/10.1103/PhysRevE.72.036403
http://dx.doi.org/10.1103/PhysRevE.64.056410
http://dx.doi.org/10.1103/PhysRevE.71.066408
http://dx.doi.org/10.1088/0305-4470/36/22/356
http://dx.doi.org/10.1103/PhysRevE.62.5648

	1. Introduction
	2. Wave packet molecular dynamics simulations
	3. Results
	4. Discussion and conclusions
	Acknowledgment
	References

